Solving a class of semidefinite programs via nonlinear programming

نویسندگان

  • Samuel Burer
  • Renato D. C. Monteiro
  • Yin Zhang
چکیده

In this paper, we introduce a transformation that converts a class of linear and nonlinear semidefinite programming (SDP) problems into nonlinear optimization problems. For those problems of interest, the transformation replaces matrix-valued constraints by vector-valued ones, hence reducing the number of constraints by an order of magnitude. The class of transformable problems includes instances of SDP relaxations of combinatorial optimization problems with binary variables as well as other important SDP problems. We also derive gradient formulas for the objective function of the resulting nonlinear optimization problem and show that both function and gradient evaluations have affordable complexities that effectively exploit the sparsity of the problem data. This transformation, together with the efficient gradient formulas, enables the solution of very large-scale SDP problems by gradient-based nonlinear optimization techniques. In particular, we propose a first-order log-barrier method designed for solving a class of large-scale linear SDP problems. This algorithm operates entirely within the space of the transformed problem while still maintaining close ties with both the primal and the dual of the original SDP problem. Global convergence of the algorithm is established under mild and reasonable assumptions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization

In this paper, we present a nonlinear programming algorithm for solving semidefinite programs (SDPs) in standard form. The algorithm’s distinguishing feature is a change of variables that replaces the symmetric, positive semidefinite variable X of the SDP with a rectangular variable R according to the factorization X = RRT . The rank of the factorization, i.e., the number of columns of R, is ch...

متن کامل

Solving Semidefinite Programs via Nonlinear Programming Part I: Transformations and Derivatives∗

In this paper, we introduce a transformation that converts a class of linear and nonlinear semidefinite programming (SDP) problems into nonlinear optimization problems over “orthants” of the form <++ × <N , where n is the size of the matrices involved in the problem and N is a nonnegative integer dependent upon the specific problem. For example, in the case of the SDP relaxation of a MAXCUT pro...

متن کامل

A Recurrent Neural Network Model for Solving Linear Semidefinite Programming

In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...

متن کامل

Interior-Point Algorithms for Semidefinite Programming Based on a Nonlinear Formulation

Recently in Burer et al. (Mathematical Programming A, submitted), the authors of this paper introduced a nonlinear transformation to convert the positive definiteness constraint on an n × n matrix-valued function of a certain form into the positivity constraint on n scalar variables while keeping the number of variables unchanged. Based on this transformation, they proposed a first-order interi...

متن کامل

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Program.

دوره 93  شماره 

صفحات  -

تاریخ انتشار 2002